Evidence of Anionic Disorder in Fluoride Borate Eu₃(BO₃)₂F₃from Eu³⁺ Luminescence: Comparison with Fluoride Carbonate Ba₂Eu(CO₃)₂F₃

Elisabeth Antic-Fidancev,*,1 Gwenaël Corbel,† Nicolas Mercier,‡ and Marc Leblanc†

*Laboratoire de Chimie Appliquée de l'Etat Solide, CNRS, UMR-7574, ENSCP, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05, France; †Laboratoire des Fluorures UPRES-A 6010, Faculté des Sciences, Avenue Olivier Messiaen, 72085 Le Mans Cedex 09, France; and ‡Laboratoire IMMO, UMR-6501, Faculté des Sciences, 2 Boulevard Lavoisier, 49045 Angers, France

Received February 24, 2000; in revised form April 12, 2000; accepted April 20, 2000; published online July 18, 2000

The optical behavior of europium fluoride borate Eu₃(BO₃)₂F₃ and barium fluoride carbonates Ba₂Eu(CO₃)₂F₃ is investigated with Eu³⁺ as a local structural probe. Tentative correlation between the optical and structural data are discussed. Unexpected broad emission lines are observed for Eu³⁺ in fluoride borate and the separation of two crystallographic sites, predicted from the structure determination, is impossible. It is assumed that deviation from the ideal stoichiometry Eu₃(BO₃)₂F₃ occurs and is due to the substitution $BO_3^{3-} \leftrightarrow 3F^-$, leading to the formulation $Eu_3(BO_3)_{2+x}F_{3-3x}$. Crystal field analysis is performed on the ${}^{7}F_{J}$ basis of the 4f⁶ configuration of Eu³⁺. The crystal field parameters (*cfp*) and crystal field strength parameter $N_{\rm v}$ are similar for both compounds though slightly larger for $Eu_3(BO_3)_2F_3$ This difference is especially significant for two rank (*cfp*), indicative of a larger electrostatic field in $Eu_3(BO_3)_2F_3$. © 2000 Academic Press

Key Words: fluoride borate; fluoride carbonate; europium luminescence; crystal field analysis.

INTRODUCTION

Numerous fluoride carbonates, eventually isostructural with natural minerals, can be synthesized under hydrothermal conditions and several new rare earth or transition metal compounds were recently evidenced (1). In contrast, the hydrothermal growth of fluoride borates is difficult: boracites $M_3B_7O_{13}F$ are obtained only for $M^{2+} = 3d$ transition metals (2). Rare earth fluoride borates were unknown until the solid state synthesis of $RE_3(BO_3)_2F_3$ phases for RE = Sm, Eu, and Gd (3). The structure of $RE_3(BO_3)_2F_3$ is built up from the stacking of REX_9 polyhedra (X = O and F), very similar to the REX_9 or BaX_9 polyhedra found in $Ba_2RE(CO_3)_2F_3$ (4). Both compounds present the same cation/anion ratio and this analogy can be expressed by the

following hypothetical exchange: $3RE^{3+} + 2BO_3^{3-} \leftrightarrow 2Ba^{2+} + RE^{3+} + 2CO_3^{2-}$.

We present here the luminescence study of europium Eu^{3+} in the fluoride borates $Eu_3(BO_3)_2F_3$ or $Gd_3(BO_3)_2F_3$: Eu^{3+} and in the fluoride carbonate $Ba_2Eu(CO_3)_2F_3$.

CRYSTAL STRUCTURE DESCRIPTION

In both title compounds, rare earth or barium cations adopt a ninefold coordination with a low-site symmetry: C_2 for Eu³⁺ and C_1 for Ba²⁺ in Ba₂Eu(CO₃)₂F₃ and C_2 for Eu(1) and C_1 for Eu(2) in Eu₃(BO₃)₂F₃. The structure is performed on Gd₃(BO₃)₂F₃ as well as on Ba₂Gd(CO₃)₂F₃ crystals and the polyhedral arrangements are shown in Fig. 1 (3, 4). The nature of the coordination anions differs in both phases: EuO₆F₃ and BaO₅F₄ in Ba₂Eu(CO₃)₂F₃, $Eu(1)O_4F_5$, and $Eu(2)O_7F_2$ in $Eu_3(BO_3)_2F_3$. However, it is remarkable that very similar trimeric units, Ba₂EuO₁₂F₉ and Eu₃O₁₄F₉, are found in Ba₂Eu(CO₃)₂F₃ and $Eu_3(BO_3)_2F_3$, respectively. These units, centered on a twofold axis, result from the connection of two polyhedra to the central polyhedron by triangular O₂F faces in $Ba_2Eu(CO_3)_2F_3$ and by oxygen edges in $Eu_3(BO_3)_2F_3$. The resulting Ba₂EuO₁₂F₉ or Eu₃O₁₄F₉ trimers, linked by borate groups and connected to each other, build up the threedimensional (3D) networks. They form infinite "herring bone" chains in $Ba_2Eu(CO_3)_2F_3$, whereas they are parallel in $Eu_3(BO_3)_2F_3$.

EXPERIMENTAL DETAILS

The luminescence of powder samples of Ba₂Eu(CO₃)₂F₃, Eu₃(BO₃)₂F₃, and Gd₃(BO₃)₂F₃: Eu³⁺ was measured at 77 K by using the blue line ($\lambda_{exc} = 457.9$ nm) of a 5-W Spectra Physics argon ion laser. Selective excitation of the respective ⁵D₀ \rightarrow ⁷F₀ transitions was performed with a rhodamine 6G dye laser pumped by the argon ion laser.

 $^{^{1}}$ To whom correspondence should be addressed. E-mail: antic@ext.jussieu.fr.

FIG. 1. Polyhedral arrangement in $Gd_3(BO_3)_2F_3$ (up) and in $Ba_2Gd(CO_3)_2F_3$ (down).

Fluorescence emission was detected through a 1-m Jarrell Ash monochromator equipped with a Hamamatsu R374 photomultiplier.

It must be noted that the synthesis of pure compounds is difficult and impurity phases are detected; $Ba_2Eu(CO_3)_2F_3$, $Eu_3(BO_3)_2F_3$, and $Gd_3(BO_3)_2F_3$: Eu^{3+} are contaminated with small amounts of $BaEu(CO_3)_2F$ (huangoite), $EuBO_3$ (triclinic), and $GdBO_3$ (vaterite), respectively.

OPTICAL DATA

The emission spectrum of raw Ba₂Eu(CO₃)₂F₃, excited by the 457.9-nm wavelength, consists of sharp and intense peaks associated with the ${}^{5}D_{0} \rightarrow {}^{7}F_{0-4}$ transitions. One line and four lines are observed respectively for the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ and for the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions (Fig. 2). Selective excitation of the unique ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition at $\lambda = 579.75$ nm gives three ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ lines, attributed to Ba₂Eu(CO₃)₂F₃. The extra line at $\lambda = 589.0$ nm corresponds to the intense ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ line of huangoite BaEu(CO₃)₂F, which presents a very weak ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition at $\lambda = 579.05$ nm. The selective excitation of the fluoride carbonate mixture at this wavelength confirms unambiguously the presence of BaEu(CO₃)₂F (Fig. 2).

FIG. 2. Parts of emission spectra at 77 K under argon ion laser (bottom) and dye excitation of Eu³⁺ in Ba₂Eu(CO₃)₂F₃ ($\lambda_{exc} = 579.75$ nm) and BaEu(CO₃)₂F ($\lambda_{exc} = 579.05$ nm).

In contrast, the emission spectra of raw Eu₃(BO₃)₂F₃ or Gd₃(BO₃)₂F₃:Eu³⁺ consist of weak and broad lines associated with very few small peaks attributed to impurity phases. Selective excitation of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transitions situated at $\lambda = 579.59$ nm and $\lambda = 580.49$ nm for Eu³⁺ in raw Eu₃(BO₃)₂F₃ (Fig. 3) gives respectively three broad lines and five sharp ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ lines. The broad lines belong to the title compound, Eu₃(BO₃)₂F₃, and the five sharp lines are associated with the presence of the impurity L-EuBO₃ (triclinic) in which two local environments are found for the rare earth ions (5). The full width at half maximum (FWHM) of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition in Eu₃(BO₃)₂F₃ is approximately 90 cm⁻¹, not far from the value given for the europium in borosilicate glass (6). The emission spectrum of Eu³⁺ in raw Gd₃(BO₃)₂F₃:Eu³⁺ (Fig. 4) is different from

FIG. 3. Parts of emission spectra at 77 K under argon ion laser (bottom) and dye excitation of Eu³⁺ in Eu₃(BO₃)₂F₃ ($\lambda_{exc} = 579.59$ nm) and *L*-EuBO₃ ($\lambda_{exc} = 580.49$ nm).

FIG. 4. Part of the emission spectra of Eu^{3+} in $Gd_3(BO_3)_2F_3$ under argon ion laser excitation at 77 K (arrows show the impurity phase).

that of Eu₃(BO₃)₂F₃. One broad ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ band and three broad lines for the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions are attributed to Gd₃(BO₃)₂F₃:Eu³⁺. Thus, the spectra of pure Eu₃(BO₃)₂F₃ and Gd₃(BO₃)₂F₃:Eu³⁺ are very similar. Only three spurious ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ sharp lines are observed in raw Gd₃(BO₃)₂F₃:Eu³⁺; they correspond to the well-known orthoborate with the vaterite structure (7–10).

The comparison of the emission spectra, presented in Figs. 5 and 6, does not indicate any similarity between $Ba_2Eu(CO_3)_2F_3$ and $Eu_3(BO_3)_2F_3$ in relation to the presence of trimeric units, $Ba_2EuO_{12}F_9$ and $Eu_3O_{14}F_9$, respectively; this is especially obvious from the ${}^5D_0 \rightarrow {}^7F_2$ transitions. This result is at variance from our study on $BaEu(CO_3)_2F$ and $Na_3La_2(CO_3)_4F:Eu^{3+}$ (11); in both structures, 10-fold coordinated REO_9F polyhedra generate almost matching emission spectra with small differences in the crystal field strength parameters.

FIG. 5. Emission spectra at 77 K of Eu³⁺ in Ba₂Eu(CO₃)₂F₃ ($\lambda_{exc} = 579.75 \text{ nm}$) and Eu₃(BO₃)₂F₃ ($\lambda_{exc} = 579.59 \text{ nm}$) in the range of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transitions.

FIG. 6. Emission spectra at 77 K of Eu³⁺ in Ba₂Eu(CO₃)₂F₃ ($\lambda_{\text{exc}} = 579.75 \text{ nm}$) and Eu₃(BO₃)₂F₃ ($\lambda_{\text{exc}} = 579.59 \text{ nm}$) in the range of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions.

CRYSTAL FIELD SIMULATION AND DISCUSSION

No selection rule for the electronic transitions observed in the optical spectra exists for rare earth ions at low-point symmetry sites; the degeneracy of every J level is completely lifted, giving rise respectively to (2J + 1) crystal field levels. In addition, for C_n or C_{nv} symmetry only, the ${}^5D_0 \rightarrow {}^7F_0$ transition, which is totally forbidden at first order, becomes observable. The presence of this transition, as well as the exact number of Stark components observed for J-levels, confirms the low symmetry of the site occupied by Eu³⁺ ions in both studied compounds. In $Ba_2Eu(CO_3)_2F_3$ or Eu₃(BO₃)₂F₃, and also in doped Gd₃(BO₃)₂F₃:Eu³⁺ despite the low concentration of Eu³⁺, a multiphonon deexcitation process quenches the emission from higher ${}^{5}D_{J}$ (J = 1, 2) levels. Thus, every emission line observed for Eu^{3+} originates from the ⁵ D_0 level to the ground ⁷ F_J multiplets.

The energy levels assigned to ${}^{7}F_{0-4}$ manifolds (Tables 1 and 3), for Eu₃(BO₃)₂F₃ and Ba₂Eu(CO₃)₂F₃, respectively, were fitted by diagonalization of the crystal field parameter Hamiltonians through a refining procedure that minimizes the root mean square (r.m.s.) deviation of the calculated values (12). In the case of Eu₃(BO₃)₂F₃, the energy level simulation was completed for one average site. The obtained phenomenological crystal field parameters are collected in Tables 2 and 4 for Eu₃(BO₃)₂F₃ and Ba₂Eu(CO₃)₂F₃, respectively. It is worthwhile to notice that the resulting crystal field strength parameters, N_v , are mostly alike (13).

The crystal field parameters B_q^k are significant for neighbor participation in the crystal field of Eu³⁺. The k = 4, 6 parameters are correlated with the crystal field which is induced by the nearest ligands. The k = 2 parameters, because of their importance in the point charge electrostatic field, give the contribution from next and further nearest

$^{2S+1}L_J$ level	$E_{\rm exp}~({\rm cm}^{-1})$	$E_{\rm calc}~({\rm cm}^{-1})$	$\frac{2S+1}{\text{level}}L_J$	$E_{\rm exp}~({\rm cm}^{-1})$	$E_{\rm calc}~({\rm cm}^{-1})$	$^{2S+1}L_J$ level	$E_{\rm exp}({\rm cm}^{-1})$	$E_{\rm calc}~({\rm cm}^{-1})$	$\frac{2S+1}{\text{level}}L_J$	$E_{\rm exp}({\rm cm}^{-1})$	$E_{\rm calc}({\rm cm}^{-1})$		
${}^{7}F_{0}$	0	0	${}^{7}F_{4}$	2707 2723	2708 2729	${}^{7}F_{0}$	0	0	${}^{7}F_{4}$	2720 2742	2720 2742		
⁷ <i>F</i> ₁	258 394 484	253 392 490		2821 2857 2881 2946	2815 2865 2890 2938	${}^{7}F_{1}$	315 384 414	313 381 418		2775 2869 2886 2922	2773 2860 2890 2921		
⁷ <i>F</i> ₂	975 1047 1083 1108 1169	970 1061 1075 1108 1168	${}^{5}D_{0}$	2940 2971 3045 3084 17253	2966 3037 3090	⁷ <i>F</i> ₂	967 983 1016 1078 1095	969 983 1024 1073 1089	${}^{5}D_{0}$	2941 2974 3072 17245	2934 2965 3075		
⁷ F ₃	1847 — 1884 1898 — 1984 1984	1843 1862 1881 1898 1903 1974 1995				⁷ F ₃	1901 1966 	1910 1954 1955 1963 1993 2017 2023					

 TABLE 1

 Experimental and Calculated Energy Levels of Eu³⁺ in Eu₃(BO₃)₂F₃

 TABLE 3

 Experimental and Calculated Energy Levels of Eu³⁺ in Ba₂Eu(CO₂)-F₂

neighbors. They are associated with the ${}^{7}F_{1}$ multiplet splitting, which is small for Ba₂Eu(CO₃)₂F₃ in comparison to that for Eu₃(BO₃)₂F₃ (Fig. 5); the electrostatic field is larger in Eu₃(BO₃)₂F₃ than in Ba₂Eu(CO₃)₂F₃.

It was already noted that sharp and intense emission lines are observed for $Ba_2Eu(CO_3)_2F_3$. This feature is significant for good structural 3D order. Thus, a cationic inversion or substitution between Ba^{2+} and Eu^{3+} , eventually coupled with the substitution $CO_3^{2-} \leftrightarrow 3F^-$ for charge compensation, is excluded.

In Eu₃(BO₃)₂F₃, anion substitution between isoelectronic BO_3^{3-} and $3F^-$ can be assumed. The oxygen-oxygen distances in BO_3^{3-} are slightly shorter than the fluorine-fluorine distances. Consequently, deviation from the ideal stoichiometry Eu₃(BO₃)₂F₃ can occur, leading to the for-

stitution induces an evolution of the relative number of O_4F_5 and O_7F_2 polyhedra and the appearance of O_6F_3 and O_5F_4 polyhedra. Fluctuations in the crystal field of Eu^{3+} can be expected and such a disorder is compatible with the presence of broad emission lines for Eu^{3+} in $Eu_3(BO_3)_2F_3$; as mentioned heretofore, the FWHM of the emission lines is even comparable to that found in Eu^{3+} -doped glasses (6).

mulation $Eu_3(BO_3)_{2+x}F_{3-3x}$ with x being small. This sub-

CONCLUSION

The crystal structure analysis indicates that similar trimeric units, $Ba_2EuO_{12}F_9$ and $Eu_3O_{14}F_9$, are found in $Ba_2Eu(CO_3)_2F_3$ and $Eu_3(BO_3)_2F_3$, respectively. There is no

 TABLE 2

 Crystal Field Parameters for Eu³⁺ in Eu₃(BO₃)₂F₃

 TABLE 4

 Crystal Field Parameters for Eu³⁺ in Ba₂Eu(CO₃)₂F₃

B_q^k	Value (cm ⁻¹) in C_{2v}		Value (cm ⁻¹) in C_{2v}	B_q^k	Value (cm ⁻¹) in C_{2v}	Value (cm ⁻¹) in C_{2v}	
B_{0}^{2}	-627	$N_{\mathbf{v},k=2}$	1089	B_{0}^{2}	264	$N_{\mathbf{v},k=2}$	522
B_{2}^{2}	-199	$N_{v,k=4}$	758	B_{2}^{2}	139	$N_{\mathbf{v},\mathbf{k}=4}$	894
B_{0}^{4}	488	$N_{v,2+4}$	1550	B_0^4	-201	$N_{v,2+4}$	1343
B_{2}^{4}	-258	$N_{\rm v, total}$	2040	B_2^4	-480	$N_{\rm v, total}$	1695
B_4^4	-142			B_4^4	189		
B_{0}^{6}	-188			B_{0}^{6}	-217		
B_{2}^{6}	-966	Nb levels	23	B_{2}^{6}	100	Nb levels	18
B_{4}^{6}	-162	σ	8.4	B_{4}^{6}	-928	σ	6.8
B_{6}^{6}	-515			B_{6}^{6}	-195		

evidence of such a similarity from the optical study of Eu³⁺ luminescence. It is shown that cationic disorder between Ba²⁺ and Eu³⁺ in Ba₂Eu(CO₃)₂F₃ is excluded, together with the coupled substitution $CO_3^{2-}\leftrightarrow 3F^-$. In Eu₃(BO₃)₂F₃, the anion substitution BO₃³⁻ $\leftrightarrow 3F^-$ is probably effective and can explain the presence of broad and weak emission peaks, even for a small substitution rate. The formulation of this fluoride borate should preferably be given by Eu₃(BO₃)_{2+x}F_{3-3x}.

REFERENCES

- 1. N. Mercier and M. Leblanc, Eur. J. Solid State Inorg. Chem. 34, 251 (1997).
- 2. T. A. Bither and H. S. Young, J. Solid State Chem. 10, 302 (1974).
- 3. G. Corbel, R. Retoux, and M. Leblanc, J. Solid State Chem. 139, 52 (1998).

- N. Mercier and M. Leblanc, Eur. J. Solid State Inorg. Chem. 28, 727 (1991).
- G. Corbel, M. Leblanc, E. Antic-Fidancev, M. Lemaître-Blaise, and J. C. Krupa, J. Alloys Compd. 287, 71 (1999).
- G. Pucker, K. Gatterer, H. P. Fritzer, M. Bettinelli, and M. Ferrari, Phys. Rev. B 53, 6225 (1996).
- 7. J. Hölsä, Inorg. Chim. Acta 139, 257 (1987).
- G. Chadeyron, M. El-Ghozzi, R. Mahiou, A. Arbus, and J. C. Cousseins, J. Solid State Chem. 128, 261 (1997).
- G. Chadeyron, R. Mahiou, M. El-Ghozzi, A. Arbus, D. Zambon, and J. C. Cousseins, J. Luminescence 72–74, 564 (1997).
- M. Ren, J. H. Lin, Y. Dong, L. Q. Yang, M. Z. Su, and L. P. You, *Chem. Mater.* 11, 1576 (1999).
- E. Antic-Fidancev, M. Lemaître-Blaise, P. Porcher, N. Mercier, and M. Leblanc, J. Solid State Chem. 116, 286 (1995).
- B. G. Wybourne, "Spectroscopic Properties of Ions in Crystals." Wiley-Interscience, New York, 1965.
- 13. F. Auzel and O. L. Malta, J. Phys. 44, 201 (1983).